如何证明A是反对称矩阵的充要条件是:A的二次型

发布时间:2020-05-04 18:02

  2、证明:一个实二次型可以分解成两个实系数一次齐次多项式乘积的充分必要条件是它的秩等于2,而且符号差为零;或者秩等于1.

  3、设A为n阶实对称矩阵,且满足A三次方 -2A平方 +4A-3E=0.证明A为正定矩阵.

  反对称矩阵具有很多良好的性质,如若A为反对称矩阵,则A,λA均为反对称矩阵;若A,B均为反对称矩阵,则A±B也为反对称矩阵;设A为反对称矩阵,B为对称矩阵,则AB-BA为对称矩阵;奇数阶反对称矩阵的行列式必为0。